Tomasz Jelonek, Arkadiusz Tomczak, Witold Pazdrowski, Agnieszka Remlein


The study consisted of the analysis of the morphological structure and properties of wood tissue in trees growing in nine stands exposed to the action of wind. Each stand was divided into three zones of wind loading exerted on the trees. The results indicated that the first wind load zone (A) in the case of each examined tree differs from the other sections of the stands, both in terms of morphology and properties of wood tissue. It was found that trees growing in the first stand zone, bordering open space, are significantly shorter, less slender and characterised by much greater stability as defined on the basis of the index CST.


Scots pine, tree stability, wind, strength quality index, tree stability index

Full Text:



Brüchert r, Gardiner B. (2006): The effect of wind exposure on the tree aerial architecture and biomechanics of Sitka spruce (Piceasitchensis, Pinaceae). American Journal of Botany 93(10):1512-1521.

Bruchwald A., Dmyterko E. (2012): Ryzyko powstawania szkód w drzewostanach poszczególnych nadleśnictw Polski. Sylwan 156(1):19-27.

Cannell M. G. R. (1993): Competition for light: detection, measurement, and quantification. Can. J. For. Res. 23:1969-1979.

Coutts, M. P. (1986): Components of tree stability in Sitka spruce on peaty gley soil. Forestry 59:173-197.

Ennos A. R. (1997): Wind as an ecological factor. Trends in Ecology & Evolution 12(3):108-111.

Erteld W., Hengst, E. (1966): Waldertragslehre. Radebeul. Neumann Verlag.

Flesch T.K., Wilson J.D. (1999): Wind and remnant tree sway in forest cutblocks. II. Relating measured tree sway to wind statistics. Agricultural and Forest Meteorology 93:243-258.

Fournier M. i in. (2006): Tree biomechanics and growth strategies in the context of forest functional ecology. In A. Herrel, T. Speck, and N. Rowe [eds.], Ecology and biomechanics: A mechanical approach to the ecology of animals and plants, 1-33. CRC Press Taylor & Francis, Boca Raton, Louisiana, USA.

Gardiner B. A. (1994): Wind and wind forces in a plantation spruce forest. Boundary-Layer Meteorology 67:161-186.

Hale S.E., Levy P.E., Gardiner B.A. (2004): Trade-offs between seedling growth, thinning and stand stability in Sitka spruce stands: a modelling analysis. Forest Ecology and Management 187:105-115.

Jakubowski M. (2010): Promieniowa zmienność makrostruktury drewna sosny zwyczajnej (Pinus sylvestris L.) i świerka pospolitego (Picea abies Karst.) w relacji do niektórych właściwości drewna. Rozprawy Naukowe 407. Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu.

Jakubowski M., Tomczak A., Jelonek T. (2011a): Compression strength along the grain in twin samples (wet and absolutely dry) coming from wood of wind-broken trees of Scots pine (Pinus sylvestris L.). Ann. Warsaw Univ. of Life Sci. - SGGW, Forest and Wood Technology 74:104-109.

Jakubowski M., Jelonek T., Tomczak A. (2011b): Modulus of Rupture in twin samples (wet and absolutely dry) coming from wood of wind-broken trees of Scots pine (Pinus sylvestris L.). Ann. Warsaw Univ. of Life Sci. - SGGW, Forest and Wood Technology 74:110-114.

James K., Haritos N., Ades P. K. (2006): Mechanical stability of trees under dynamic loads. American Journal of Botany 93(10):1522-1530.

Jaworski, A. (2004): Podstawy przyrostowe i ekologiczne odnawiania oraz pielęgnacji drzewostanów. Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa.

Jelonek T. (2013): Biomechaniczna stabilność drzew a wybrane właściwości fizyczne, mechaniczne i strukturalne ksylemu sosny zwyczajnej (Pinus sylvestris L.) wyrosłej w warunkach gruntów porolnych i leśnych, Rozprawy naukowe 455, Wydawnictwo Uniwersytetu Przyrodniczego w Poznaniu, Poznań 2013.

Jelonek T., Jakubowski M., Tomczak (2011): A. The effect of wind exposure on the selected stability parameters of the Scots pine stands. Ann. Warsaw Univ. of Life Sci. - SGGW, Forest and Wood Technology 74:143-149.

Kerzenmacher T., Gardiner B. A. (1998): A mathematical model to describe the dynamic response of a spruce

tree to the wind. Trees, 12:385-394.

Mayer H. 1987. Wind-induced tree sways. Trees (Berlin) 1:195- 206.

Morgan J., Cannell G. R. (1994): Shape of tree stems: a reexamination of the uniform stress hypothesis. Tree Physiology 14(1):49-62.

Niklas K.J., Spatz H.-C. (2006): Allometric theory and the mechanical stability of large trees: proof and conjecture. American Journal of Botany 93:824-828.

Peltola H., Kellomaki S., Hassinen A., Granander M. (2000): Mechanical stability of Scots pine, Norway spruce and birch: ananalysis of tree pulling experiments in Finland. Forest Ecology and Management 135:143-153.

Peltola H., Kellomäki S., Hassinen A., Lementtinen M., Aho J. (1993): Swaying of trees caused by wind: analysis of field measurements. Silva Fennica 27(2):113-126.

Peltola H.M. 2006. Mechanical stability of trees under static loads. American Journal of Botany 93(10):1501-1511.

Plomion C., Leprovost G., Stokes A. (2001): Wood formation in trees. Plant Physiology: 127,1513-1523. Pretzsch H. (1995): Zum Einfluß des Baumverteilungsmusters auf den Bestandeszuwachs. Allgemeine Forst-und Jagdzeitung 166:190-201.

Quine C. P., Gardiner, B. A. (2007): Understanding how the interaction of wind and trees results in windthrow,

stem breakage, and canopy gap formation. In: Johnson, E.A., Miyanishi, K. (Eds.), Plant Disturbance

Ecology - The Process and the Response. Elsevier, Amsterdam.

Quine, C. P., Gardiner, B. A. (2007): Understanding how the interaction of wind and trees results in windthrow, stem breakage and canopy gap formation. In Johnson, E. (Ed.) Plant disturbance ecology: the process and the response. Academic Press.

Scott R. E., And Mitchell S. J. (2005): Empirical modeling of windthrow risk in partially harvested stands using tree, neighbourhood, and stand attributes. Forest Ecology and Management 218:193-209.

Spatz H. C., Bruechert F. (2000): Basic biomechanics of selfsupporting plants: wind loads and gravitational

loads on a Norway spruce tree. Forest Ecology and Management 135:33-44.

Tomczak A., Jelonek T., Jakubowski M. (2011): Modulus of elasticity of twin samples (wet and absolute dry)

origin from Scots pine (Pinus sylvestris L.) trees broken by wind. Ann. Warsaw Univ. of Life Sci. -SGGW, Forest and Wood Technology 77:149-153.

Tomczak A., Jelonek T., Jakubowski M. (2012): Zmiany w budowie i właściwościach drewna jako efekt oddziaływania wiatru na drzewa. Sylwan 156(10):776-783.

Wood C. J. (1995): Understanding wind forces on trees. In M. P. Coutts and J. Grace [eds.], Wind and trees, 133-164. Cambridge University Press, Cambridge, UK.

Zajączkowski J. (1991): Odporność lasu na szkodliwe działanie wiatru i śniegu. Wydawnictwo Świat. Warszawa.

Forestry Letters  eISSN 2450-4920

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we'll assume that you are happy to receive all cookies from this website. If you would like to change your preferences you may do so by following the instructions here