Comparison of algorithms for the automatic determination of the latewood area in wood samples of Scots pine (Pinus sylvestris L.) using software ImageJ

Marcin Jakubowski


This study verify the accuracy of 16 algorithms available in the ImageJ and using for determination of  latewood zone. For purposes of the work 50 wood samples (20 mm x 20 mm x 30 mm) were collected from 10 Scots pine trees (54 year old). Samples were taken from a height of 1.3 m. Cross section of wood were polished and scanning. Images of wood samples were varied in terms of grayscale and the pattern of annual rings. Manually selected area (with using polygonal tool) was used as reference latewood area in each sample. Results obtained with automatic threshold measurement were compared with manually selection area. Additionally measurements of „defoult” algorithm were corrected manually if necessary (according to human decision) as a 17 test. The most suitable for automatic latewood identification proven to be four algorithms:  IsoData, Li, Otsu and Yen. The highest accuracy was obtained with test No 17 (manual correction). Wood is difficult material for automatic threshold processing, due to many artefacts, but  mentioned algorithms could be  appropriate with enough precision. This study propose ImageJ software as useful tool for identification of latewood zone.


thresholding algorithm, latewood area, wood properties, wood structure, image analysis

Full Text:



Campbell R., McCarroll D., Loader N.J., Grudd H., Robertson I., Jalkanen R. 2007. Blue intensity in Pinus sylvestris tree rings: developing a new paleoclimate proxy. The Holocene 17 (6): 821–28.

Fournier M., Dischler JM., Bechmann D. 2010. Image processing algorithm for automated detection of annual ring orientation on wood shingles cross section. IEEE Symposium on Computer Graphics and Image Processing, Rio de Janeiro, Brazil 72–79.

Hejnowicz Z. 2002. Anatomia i histogeneza roślin naczyniowych. Warszawa, PWN.

Huang L-K., Wang M-J.J. 1995. Image tresholding by minimizing the measure of fuzziness. Pattern Recognition 28 (1): 41–51.

Jakubowski M. 2010. Promieniowa zmienność makrostruktury drewna wiatrołomów sosny zwyczajnej (Pinus Sylvestris L.) i świerka pospolitego (Picea Abies Karst.) w relacji do niektórych właściwości drewna. Uniwersytet Przyrodniczy w Poznaniu, Rozprawy Naukowe 407: 1–76.

Javier P., Pérez J.M.M. 2013. Image Processing with ImageJ. Packt Publishing.

Jelonek T., Jakubowski M., Tomczak A. 2011. The effect of wind exposure on selected stability parameters of scots pine stands. Annals of Warsaw University of Life Sciences – SGGW 74: 143–49.

Kapur, J.N., Sahoo P.K., Wong A.C.K. 1985. A new method for gray-level picture thresholding using the entropy of the histogram. Graphical Models and Image Processing 29 (3): 273–85.

Li Ch., Tam P.K.S. 1998. An interactive algorithm for minimum cross entropy thresholding. Pattern Recognition Letters 18 (8): 771–76.

McCarroll D., Pettigrew E., Luckman A. 2002. Blue reflectance provides a surrogate for latewood density of high-latitude pine tree rings. Arctic, Antarctic, and Alpine Research 34 (4): 450–53.

Osuna-Enciso V., Cuevas E., Sossa H. 2013. A comparison of nature inspired algorithms for multi-threshold image segmentation. Expert Systems with Applications 40: 1213–19.

Sezgin M., Sankur B. 2004. Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13 (1): 146–65.

Speer J. H. 2010. Fundamentals of Tree Ring Research. University of Arizona Press. Tucson, Arizona.

Spława-Neyman, S. 1976. Sprawozdanie z badań nad wpływem sęków na właściwości tarcicy. Maszynopis ITD. Poznań.

Tajimaa R., and Katob Y. 2010. Comparison of threshold algorithms for automatic image processing of rice roots using freeware ImageJ. Field Crops Research 121 (3): 460–63.

Tomczak A., Jelonek T. 2013. Promieniowa zmienność właściwości drewna sosny zwyczajnej (Pinus sylvestris L.) wyrosłej na gruntach porolnych. Leśne Prace Badawcze 74 (2).

Tomczak A., Jelonek T., Zon L. 2010. Porównanie wybranych właściwości fizycznych drewna młodocianego i dojrzałego sosny zwyczajnej (Pinus sylvestris L.) z drzewostanów rębnych. Sylwan 154 (12): 809–17.

Yen J.C., Chang F.J., Chang S. 1995. A new criterion for automatic multilevel thresholding. IEEE Trans. on Image Processing 4 (3): 370–78.

Zhihui H., Weiyu Y., Shanxiang L., Jiuchao F. 2012. Multi-level threshold image segmentation using artificial bee colony algorithm. Fifth Conference on Measuring Technology and Mechatronics Automation, 707–11.

Zielski A., Krąpiec M. 2009. Dendrochronologia. Wydawnictwo Naukowe PWN.

Forestry Letters  eISSN 2450-4920

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we'll assume that you are happy to receive all cookies from this website. If you would like to change your preferences you may do so by following the instructions here