Mass and density of birch pulpwood harvested from stands in different types of forest habitats

Arkadiusz Tomczak, Tomasz Jelonek


Density is one of the most important properties, on the basis of which other characteristics and attributes of lumber are evaluated. One of its more practical applications is in the evaluation of the load mass of pulpwood. Taking into consideration the high variability of lumber density and how this attribute is influenced by the habitat, a pilot experiment was carried out which involved comparing the mass (kg) and the green density (kg/m3) of lumber harvested from stands in habitats differing in terms of soil fertility.
The forest habitat type is a factor which significantly affects the wood volume, and thus also the mass of the freshly harvested birch pulpwood. In a more fertile habitat the average volume and true mass of the lumber were higher. However, growth and development conditions defined based on the type of habitat did not have an effect on the average density of the birch pulpwood. At low volumes,the mass and density of logs in both analysed habitats are similar. The differences are more marked when the wood volume is greater.


birch, lumber, habitat fertility, green density

Full Text:



Aleinikovas M., Grigaliūnas J. (2006). Differences of pine (Pinus sylvestris L.) wood physical and mechanical properties from different forest site types in Lithuania. Baltic Forestry, 12 (1): 9-13

Bhat KM (1980). Variation in structure and selected properties of Finnish birch wood: I. interrelationships of some structural features, basic density and shrinkage. Silva Fennica, 14(4): 384-396.

Clark Alexander III, Daniels Richard F. (2000). Estimating moisture content of tree-length roundwood. Pulping/Process and Product Quality Conference, Sheraton Boston

Dunham R. A., Cameron A. D., Petty J. A. (1999). Effect of growth rate on the strength properties of sawn beams of silver birch (Betula pendula Roth.). Scandinavian Journal of Forest Research 14(1): 18 – 26.

Hakkila P. (1979). Wood density survey and dry weight tables for pine, spruce and birch stems in Finland. Communications Institute Forestalia Fennica 96(3): 1 – 59.

Helińska–Raczkowska L. (1996). Zmienność wilgotności i gęstości drewna w świeżo ściętych pniach brzozy (Betula pendula Roth.). Folia Forestalia Polonica, Seria B, zeszyt 27: 23 – 30.

Heräjärvi H. (2001). Technical properties of mature birch (Betula pendula and B. pubescens) for sawmilling in Finland. Silva Fennica, 35(4): 469 – 485.

Heräjärvi H. (2004a). Static bending properties of Finnish birch wood. Wood Sci. Technol. 37: 523 – 530

Heräjärvi H. (2004b). Variation of basic density and Brinell hardness within mature Finnish Betula pendula and B. pubescens stems. Wood and Fiber Science, 36(2): 216 – 227

Krzysik F. (1974). Nauka o surowcu drzewnym, PWN, Warszawa

Lachowicz H. (2011). Wpływ grubości drzew na wybrane właściwości strukturalne i fizyko−mechaniczne drewna brzozy brodawkowatej (Betula pendula Roth.). Sylwan, 155 (9): 581−588.

Lachowicz H. (2012). Wieloczynnikowa analiza zmienności gęstości drewna brzozy brodawkowatej (Betula pendula Roth.). Sylwan 156 (6): 414−419.

Lachowicz H., Jednoralski G., Paschalis−Jakubowicz P. (2014). Wpływ siedliska na wybrane właściwości strukturalne i fizyko – mechaniczne drewna brzozy brodawkowatej (Betula pendula Roth.). Sylwan, 158 (4): 285−291.

Liepiņš K. and Rieksts-Riekstiņš J. (2013). Stemwood Density of juvenile Silver Birch trees (Betula pendula Roth.) from plantations on former farmlands. Baltic Forestry 19(2): 179-186.

Luostarinen K., Verkasalo E. (2000). Birch as sawn timber in mechanical further processing in Finland. A literature study. Silva Fennica, Monographs 1, 40 p

Möttönen V., Heräjärvi H., Koivunen H., Lindblad J. (2004). Influence of felling season, drying method and within – tree location on the brinell hardness and equilibrium moisture content of wood from 27 – 35 year old Betula pendula. Scand. J. For. Res. 19: 241 – 249

Möttönen V. Luostarinen K. (2006): Variation in density and shrinkage of birch (Betula pendula Roth) timber from plantations and naturally regenerated forests. Forest Prod. J. 56(1): 34 – 39

Pavlovičs G., Dolacis J., Daugaviete M., Hrols J., Alksne A., Cīrule D. (2006). Comparison of the physical and mechanical properties of the wood of wild cherry (Prunus avium L.) and birch (Betula pendula Roth.) grown in Latvia. Ann. Warsaw Agricult. Univ. – SGGW, For and Wood Technol. 59: 164 – 168.

Pikk J., Kask R. (2004). Mechanical properties of juvenile wood of Scots pine (Pinus sylvestris L.) on myrtillus forest site type. Baltic Forestry, 10(1): 72–78.

Pushinskis V., Mionchinskis U., Tuherm H., Hrols J., Dolacis J. (2003). Some physical and mechanical properties of birch (Betula pendula Roth.) wood growing in Latvia. Ann. Warsaw Agricult. Univ. – SGGW, For and Wood Technol. 53: 308 – 317

Repola J. (2006). Models for vertical wood density of Scots pine, Norway spruce and birch stems, and their applicationto determine average wood density. Silva Fennica, 40 (4): 673−685.

Stener L. G., Hedenberg O. (2003). Genetic parameters of wood, fiber, stem quality and growth traits in a clone test with Betula pendula. Scandinavian Journal of Forest Research, 18(2): 103 – 110

Trendelenburg R. (1939). Das Holz als Rohstoff. Berlin

Tomczak A., Jelonek T., Jakubowski M., Wąsik R., Jaszczak A. (2015). Weight and green density of oak pulpwood harvested from the selected stands of Łąck Forest Inspectorate. Ann. WULS – SGGW, For. And Wood Technol. 91: 172 - 178.

Wagenfuhr R. (1996). Holzaltas. VEB Fachbuchverlag, Leipzig, 4th ed. 688 p

Forestry Letters  eISSN 2450-4920

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we'll assume that you are happy to receive all cookies from this website. If you would like to change your preferences you may do so by following the instructions here