The mite communities (Acari, Mesostigmata) in Scots pine (Pinus sylvestris L.) forest after thinning – preliminary studies
Abstract
In total, 286 mesostigmatid soil mites classified into 30 taxa (26 species and 4 genera) were recorded. The most abundant species were Paragamasus conus and V eigaia nemorensis. Only three species (Paragamasus conus, V eigaia nemorensis, and juvenile instars of Paragamasus sp.) were noted in all sampled forests. The mean diversity and species richness, but not the mite density per square meter, differed significantly between studied forests. The highest mite density , diversity , as well as species richness were recorded in stands 20 years after thinning, while the lowest one year after thinning. It can be concluded that thinning reduces the mite density in a short period (one year after thinning), however , the abundance, species richness, and diversity starts to increase with forest ageing.
Keywords
Full Text:
PDFReferences
Beaulieu, F ., Weeks, A.R., 2007. Freeliving mesostigmatic mites in Australia: their roles in biological control and bioindication. Australian Journal of Experimental Agriculture 47, 460–478. https://doi.org/
1071/EA05341
Bird, S.B., Coulson, R.N., Fisher , R.F ., 2004. Changes in soil and litter arthropod abundance following tree harvesting and site preparation in a loblolly pine (Pinus taeda L.) plantation. Forest Ecology and Management 202,
–208. https://doi.org/10.1016/j.foreco.2004.07.023
Blair , J.M., Crossley , D.A., 1988. Litter Decomposition, Nitrogen Dynamics and Litter Microarthropods in a Southern Appalachian Hardwood Forest 8 Y ears Following Clearcutting. Journal of Applied
Ecology 25, 683–698. https://doi.org/10.2307/2403854
Edmonds, R.L., Marra, J.L., Barg, A.K., Sparks, G.B., 2000. Influence of forest harvesting on soil organisms and decomposition in western Washington, in: Proceedings of the California Forest Soils Council Conference on Forest
Soils Biology and Forest Management. pp. 53–72
Ghilyarov , M.S., Bregetova, N.G., 1977. A key to soilinhabiting mites, Mesostigmata (in Russian). Nauka, Moscow.
Graae, B.J., Sunde, P .B., 2000. The impact of forest continuity and management on forest floor vegetation evaluated by species traits. Ecography 23, 720–731. https://doi.org/10.1111/j.16000587.2000.tb00315.x
Greenberg, C.H., McGrane, A., 1996. A comparison of relative abundance and biomass of grounddwelling arthropods under different forest management practices. Forest Ecology and Management 89, 31–41. https://doi.org/10.1016/S03781127(96)038686
Gulvik, M.E., 2007. Mites (Acari) as indicators of soil biodiversity and land use monitoring: A review. Polish Journal of Ecology 55, 415–440.
Gwiazdowicz, D.J., 2007. Ascid mites (Acari. Mesostigmata) from selected forest ecosystems and microhabitats in Poland. Akademia Rolnicza im. Augusta Cieszkowskiego, Poznań.
Hagar , J., Howlin, S., Ganio, L., 2004. Shortterm response of songbirds to experimental thinning of young Douglasfir forests in the Oregon Cascades. Forest Ecology and Management 199, 333–347. https://doi.org/10.1016/j.foreco.2004.05.054
Heneghan, L., Salmore, A., Crossley , D.A., 2004. Recovery of decomposition and soil microarthropod communities in an Appalachian watershed two decades after a clearcut. Forest Ecology and Management 189, 353–362. https://doi.org/10.1016/j.foreco.2003.09.002
Huhta, V ., Hänninen, S.M., 2001. Effects of temperature and moisture fluctuations on an experimental soil microarthropod community . Pedobiologia 45, 279–286. https://doi.org/10.1078/0031405600085
Hynes, H.M., Germida, J.J., 2013. Impact of clear cutting on soil microbial communities and bioavailable nutrients in the LFH and Ae horizons of Boreal Plain forest soils. Forest Ecology and Management 306, 88–95. https://doi.org/10.1016/j.foreco.2013.06.006
Kaczmarek S., 2000. Glebowe Gamasida (Acari) młodników sosnowych w rejonach oddziaływania zanieczyszczeń wybranych zakładów przemysłowych. Wyd. Ucz. WSP , Bydgoszcz (in polish).
Kamczyc, J., Skorupski, M., Dyderski, M.K., Gazda, A., Hachułka, M., Horodecki, P ., Kałucka, I., Malicki, M., Pielech, R., Smoczyk, M., Wierzcholska, S., Jagodziński, A.M., 2018. Response of soil mites (Acari, Mesostigmata) to longterm Norway spruce plantation along a mountain stream. Exp Appl Acarol 76, 269–286. https://doi.org/10.1007/s1049301803143
Kamczyc, J., Turczański, K., Malica, J., Urbanowski, C.K., Kobusiewicz, A., PersKamczyc, E., 2020. Soil near mature oaks is refugium for soil mites (Acari, Mesostigmata) in managed forests. null 1–8. https://doi.org/10.1080/01647954.2020.1804997
Karg, W., 1993. Acari (Acarina) Milben Parasitiformes (Anactinochaeta), Cohors Gamasina Leach Raubmmilben. Die Tierwelt Deutschlands. VEB Gustav Fischer V erlag, Jena.
Karg, W., 1971. Acari (Acarina) Milben, Unterordnung Anactinochaeta (Parasitiformes). Die freilebenden Gamasina (Gamasides). Raubmilben, Die Tierwelt Deutschlands 59. Gustav Fischer V erlag, Jena.
Koehler , H.H., 1999. Predatory mites (Gamasina, Mesostigmata). Agriculture, Ecosystems & Environment 74, 395–410. https://doi.org/10.1016/S01678809(99)000456
Koivula, M., 2002. Boreal carabidbeetle (Coleoptera, Carabidae) assemblages in thinned unevenaged and clearcut spruce stands. Annales Zoologici Fennici 39, 131–149.
Korboulewsky , N., Perez, G., Chauvat, M., 2016. How tree diversity affects soil fauna diversity: A review. Soil Biology and Biochemistry 94, 94–106. https://doi.org/10.1016/j.soilbio.2015.11.024
Lindo, Z., Visser , S., 2004. Forest floor microarthropod abundance and oribatid mite (Acari: Oribatida) composition following partial and clearcut harvesting in the mixedwood boreal forest. Canadian Journal of Forest Research 34, 998–1006. https://doi.org/10.1139/x03284
Madej, G., 2004. Rozwój zgrupowań roztoczy Mesostigmata (Arachnida. Acari) na nieużytkach poprzemysłowych. Uniwersytet Śląski, Katowice (in polish).
McIver , J.D., Parsons, G.L., Moldenke, A.R., 1992. Litter spider succession after clearcutting in a western coniferous forest. Canadian Journal of Forest Research 22, 984–992. https://doi.org/10.1139/x92132
Micherdziński, W., 1969. Die Familie Parasitidae Oudemans, 1901 (Acarina, Mesostigmata). PWN, Kraków.
Mueller , K.E., Hobbie, S.E., Chorover , J., Reich, P .B., Eisenhauer , N., Castellano, M.J., Chadwick, O.A., Dobies, T ., Hale, C.M., Jagodziński, A.M., Kałucka, I., KieliszewskaRokicka, B., Modrzyński, J., Rożen, A., Skorupski, M., Sobczyk, Ł., Stasińska, M., Trocha, L.K., Weiner , J., Wierzbicka, A., Oleksyn, J., 2015. Effects of litter traits, soil biota, and soil chemistry on soil carbon stocks at a common garden with 14 tree species. Biogeochemistry 123, 313–327. https://doi.org/10.1007/s1053301500836
Oksanen, J., Blanchet, F .G., Friendly , M., Kindt, R., Legendre, P ., McGlinn, D., Minchin, P .R., O’Hara, R., Simpson, G.L., Solymos, P ., Stevens, M., Szoecs, E., Wagner , H., 2018. V egan: community ecology package. R Package V ersion. 2.52. CRAN.
Pastwik, E., Skorupski, M., Piasta, A., Jagodziński, A.M., 2013. Mesostigmata mites of afforested postindustrial habitats on lignite mine spoil heap in Bełchatów – a preliminary study ., in: Neményi M., V arga L., Facskó
F ., Lőrincz I. (Eds). Science for Sustainability. Proceedings of the International Scientific Conference for PhD Students. University of West Hungary Press, Sopron. Presented at the Science for Sustainability International
Scientific Conference for PhD Students, University of West Hungary Press, Sopron., University of West Hungary , Győr , pp. 251–257.
Paysen, T .E., Narog, M.G., 1993. Tree mortality years after burning a thinned Quercuschrysolepis stand. Canadian Journal of Forest Research 23, 2236–2241. https://doi.org/10.1139/x93277
Peck, R.W., Niwa, C.G., 2005. LongerT erm Effects of Selective Thinning on Microarthropod Communities in a LateSuccessional Coniferous Forest. Environmental Entomology 34, 646–655. https://doi.org/10.1603/0046225X34.3.646
Piasta, A., Skorupski, M., Horodecki, P ., Jagodziński, A.M., 2015. Zgrupowania roztoczy (Acari) pod drzewostanami sosnowymi na terenach leśnych i rekultywowanym zwałowisku zewnętrznym w Nadleśnictwie Bełchatów. Studia i Materiały Centrum Edukacji PrzyrodniczoLeśnej 17, 279–294 (in polish).
Plan Urządzenia Lasu Nadleśnictwa Sulęcin. 2014.
Ruf, A., Beck, L., 2005. The use of predatory soil mites in ecological soil classification and assessment concepts, with perspectives for oribatid mites. Ecotoxicology and Environmental Safety 62, 290–299. https://doi.org/10.1016/j.ecoenv .2005.03.029
Salmane, I., 2001. A checklist of Latvian Gamasina mites (Acari, Mesostigmata) with short notes to their ecology . Latvijas Entomologs 38: 5061.
Salmane, I., Brumelis, G., 2008. The importance of the moss layer in sustaining biological diversity of Gamasina mites in coniferous forest soil. Pedobiologia 52, 69–76. https://doi.org/10.1016/j.pedobi.2008.03.002
Seastedt, T .R., Crossley , D.A., 1981. Microarthropod Response Following Cable Logging and ClearCutting in the Southern Appalachians. Ecology 62, 126–135. https://doi.org/10.2307/1936676
Skorupski, M., Horodecki, P ., Jagodziński, A.M., 2013. Roztocze z rzędu Mesostigmata (Arachnida, Acari) na terenach przemysłowych i poprzemysłowych w Polsce. Nauka Przyroda T echnologie 7, #11 (in polish).
Sullivan, T .P ., Sullivan, D.S., Lindgren, P .M.F ., 2001. Stand Structure and Small Mammals in Young Lodgepole Pine Forest: 10Y ear Results After Thinning. Ecological Applications 11, 1151–1173.
Thakur , M.P ., Reich, P .B., Hobbie, S.E., Stefanski, A., Rich, R., Rice, K.E., Eddy , W.C., Eisenhauer , N., 2018. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nature Climate Change 8, 75–78. https://doi.org/10.1038/s4155801700326
Theenhaus, A., Schaefer , M., 1995. The effects of clearcutting and liming on the soil macrofauna of a beech forest. Forest Ecology and Management 77, 35–51. https://doi.org/10.1016/03781127(95)035804
Urbanowski, C., Horodecki, P ., Kamczyc, J., Skorupski, M., Jagodziński, A., 2018. Succession of Mite Assemblages (Acari, Mesostigmata) during Decomposition of Tree Leaves in Forest Stands Growing on Reclaimed PostMining Spoil Heap and Adjacent Forest Habitats. Forests 9, 718. https://doi.org/10.3390/f9110718
Vesala, T ., Suni, T ., Rannik, Ü., Keronen, P., Markkanen, T ., Sevanto, S., Grönholm, T ., Smolander , S., Kulmala, M., Ilvesniemi, H., Ojansuu, R., Uotila, A., Levula, J., Mäkelä, A., Pumpanen, J., Kolari, P ., Kulmala, L., Altimir , N., Berninger , F ., Nikinmaa, E., Hari, P ., 2005. Effect of thinning on surface fluxes in a boreal forest. Global Biogeochemical Cycles 19. https://doi.org/10.1029/2004GB002316
Vilkamaa, P ., Huhta, V ., 1986. Effects of fertilization and pH on communities of Collembola in pine forest soil. Annales Zoologici Fennici 23, 167–174.
Walter , D.E., Proctor , H.C., 2013. Mites and Biological Diversity , in: Walter , D.E., Proctor , H.C. (Eds.), Mites: Ecology , Evolution & Behaviour: Life at a Microscale. Springer Netherlands, Dordrecht, pp. 447–459. https://doi.org/10.1007/9789400771642_11
Wilson, S.M., Carey , A.B., 2000. Legacy retention versus thinning: influences on small mammals. Northwest Science 74(2), 131–144.
Yi, H., Moldenke, A., 2005. Response of GroundDwelling Arthropods to Different Thinning Intensities in Young Douglas Fir Forests of Western Oregon. Environmental Entomology 34, 1071–1080.
Forestry Letters eISSN 2450-4920
We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we'll assume that you are happy to receive all cookies from this website. If you would like to change your preferences you may do so by following the instructions here